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Abstract

A model for metal powder compaction is proposed as an interpolation between well-known models corresponding to
a high level of porosity with low inter-particle cohesive strength or a low level of porosity with high cohesion. A simple
model for analysis of shear band development in uniformly strained solids is used to study the possibility of flow
localization during metal powder compaction. It is found that the material model predicts localization when the
porosity is high and the cohesion is low, and localization is also predicted at intermediate levels of porosity, but not at
low porosity levels where full cohesion applies.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

As a production process for obtaining near net final shape of complex-shaped engineering components,
with good mechanical properties of the material, metal powder compaction and subsequent sintering has
increasing importance. In the first part of the process, powder compaction, the success of the die com-
paction depends on obtaining defect-free green parts of approximately uniform density, and here modelling
is an important tool. A micro-mechanically based material model has been developed by Fleck et al. (1992),
relevant to high porosities in the early stage of compaction. These authors also suggested a combination of
their FKM model with the Gurson model (1977) , more relevant to low porosities in the final stage, in order
to cover the full range of porosities during a compaction process. Redanz (1999, 2001) has used these
material models to analyse the powder compaction of a cup, comparing different compaction routes and
ejection routes, and has shown that a wide variety of stress states may occur in the green part during the
process.

If localization of plastic flow occurs during the powder compaction, this will tend to result in either a
defect or in strongly non-uniform density. The possibility of shear band formation has been investigated by
Redanz and Tvergaard (1999) based on the material model combining the FKM and Gurson models. This
study focussed on shear localization under tensile loading in sintered metals, where the possibility of a
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rather high level of porosity is relevant for real sintered components, but the study has also shown that no
shear localization is predicted for compressive loading, even though it is well known that such instabilities
occur in pressure sensitive materials like soils, which can only carry compressive stresses (e.g. see Rudnicki
and Rice, 1975; Oda and Kazama, 1998). Soil-like behaviour is better accounted in the modified version of
the FKM model proposed by Fleck (1995), where a cohesion factor was introduced, such that full inter-
particle cohesion as well as no cohesion and intermediate cases can be represented. When the cohesion
factor is close to zero the resulting yield surface resembles yield surfaces for cohesionless soils, consisting of
a cone and a cap (e.g. Lade, 1977) or the Cam-Clay model of Schofield and Wroth (1968). Based on the
material model of Fleck (1995) it has been shown by Tvergaard and Redanz (2001) that a cohesionless
metal powder is prone to localization in shear bands during compaction.

In the present paper a combination of two porous material models is proposed, analogous to that
proposed by Fleck et al. (1992). However, here the low cohesion model of Fleck (1995) is combined with the
Gurson model, and furthermore the cohesion factor is described as porosity dependent. Thus the model is
able to describe the realistic situation that the inter-particle cohesion is very low at high porosities, with the
cohesion increasing slowly as the porosity is reduced, finally transforming into the full cohesion represented
by the Gurson model when the material is fully compacted. This material model is used here to analyse the
possibility of localization in shear bands during the compaction of a metal powder.

2. Porous material model

Fleck et al. (1992) proposed an approximate yield criterion for a particulate aggregate based on earlier
work of Ashby and co-workers (e.g. Helle et al., 1985; Arzt, 1982; Arzt et al., 1983). They assumed that the
porous material consists of spherical equi-sized particles bonded by isolated necks and that the particles
move compatibly with the macroscopic strain. Fleck (1995) extended this model to account for reduced
inter-particle cohesion by introducing a cohesion factor, #, for which fully sticking contacts are represented
when n = 1 and no cohesive strength is present when 7 = 0. Redanz (1999) modified Fleck’s yield criterion
slightly to the form
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with the current yield stress of the matrix material, oy, and the void volume fraction or porosity, f. The
von Mises stress, o, = \/3s;sY/2, where s = g7 — GYg%/3 is the deviatoric stress tensor, and the yield
strength of the porous material under hydrostatic loading

py=297(1 - )L J;f o 2)

where f = (.36 is the porosity at dense random packing. This formulation of the yield criterion reduces to
the FKM model (Fleck et al., 1992) for fully sticking contacts, n = 1. At porosities below about 0.25, the
contacts start to interact and the particles become less and less spherical in shape. Hence, the micro-
mechanically based particle model is applicable at high porosities only.

When powders are compacted, the inter-particle contacts weld together and true metallurgical bonds are
formed. This would suggest some increase of # during the process. We model this phenomenon by including
a dependency of 5 on the porosity, f, in the following form:
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where 7, and 7, are initial and final cohesion factors, respectively. Hence, at porosities higher than f,, the
yield surface, Eq. (1), is used with n = 5, at porosities lower than f;, the cohesion factor is # = #,, and for
porosities in the range in between a linear interpolation of 7, and 5, is used.

At low porosities the porosity exists in form of isolated voids. Here, the micro-mechanical basis for the
Gurson model (1977) is suitable. The appropriate yield condition is then

bG =

2 k
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where the constants ¢; = 1.5 and ¢, = 1.0 are included in order to bring the predictions of the model into
closer agreement with full numerical analyses for periodic arrays of voids (see Tvergaard, 1981, 1982a).

In the present work, a combination of the two material models is used. At high porosities, f > f;, the
model (1) for low inter-particle cohesion is used and at low porosities, /' < f», the Gurson model is used. In
the transition range, f| > f > f», a linear combination of the material models is used, analogous to an
interpolation used in Fleck et al. (1992), which results in the yield criterion

¢comb - Wr1¢17 + WGng =0 (5)

where the weight functions are given by w, = (f — f2)/(f1 — f2) and wg = (f1 — f)/(fi — f>). Yield surfaces
of different porosities are shown in Fig. 1.

It should be noted, that the Gurson model exhibits equal strength in tension and compression corres-
ponding to full cohesion, n = 1, in the particle model. Hence, when the two models are combined, (5), the
cohesion factor in @, is increased in the range 1, < 1 < 1, between f, and f,. But simultaneously the weight
of @, in (5) is reduced as f decays from f; to f>, so that full cohesion is represented for f < f>.
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Fig. 1. Yield surface dependence on the hydrostatic pressure. Data in the material model, Eq. (5), are: , = 0.001, , = 0.1, £, = 0.30,
f» =0.05, /i =0.20, and f> = 0.01.
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The analysis is based on a convected co-ordinate Lagrangian formulation of the field equations in which
the Lagrangian strain tensor is expressed by

ny; = 3Gy — &) (6)

where g;; and G;; are the metric tensors in the reference and current configuration, respectively. The total
strain increment is taken to be the sum of the elastic and plastic parts

’71‘] = '15 + ’1,]; (7)

The material behaviour of the matrix is taken to be elastic-plastic with the uniaxial true stress-logarithmic
strain relation given by the piecewise power law

o/E, for e < gy
€= ﬂ(£) for ¢ > ay (8)
E \ oy

where E is Young’s modulus, oy is the uniaxial yield stress, and » is the hardening exponent of the matrix
material. Using the uniaxial stress—strain curve for the matrix material

ém = (1/E: = 1/E)n ©)

and assuming that the macroscopic plastic work equals the microscopic plastic work, the following evo-
lution equation for the tensile equivalent yield stress in the matrix material is obtained

EE, d'n}

T E—E F(f)ou )

oM
Here, E; is the slope of the uniaxial stress—strain curve for the matrix material, and F(f) represents the
volume fraction of deforming material, which is different for the two yield criteria, (1) and (4), used here
(see e.g. Fleck et al., 1992).
The change in porosity may be written as

f=0-G", (11)

when the contribution from the elastic part of the strain to the total change in volume is vanishing com-
pared to the plastic contribution.

Macroscopic normality for the porous aggregate is assumed. Thus, the consistency condition, & = 0,
leads to the plastic strain increment in the form

p_ 1 00 00y,

s = H 307 047 (12
with
oo ~ ;. 0@ EE, a’ 0P
H=—(—(-pnci+— =L % ° 1
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where (V) denotes the Jaumann derivative. The constitutive relations are then obtained by using the elastic
relationship

o = AR (14)

(see e.g. Tvergaard, 1990).



P. Redanz, V. Tvergaard | International Journal of Solids and Structures 40 (2003) 1853—1864 1857

3. Shear band model

The model used to predict the onset of localization in a homogeneously strained solid is illustrated in
Fig. 2. A material inhomogeneity is present in a thin slice of material, which is assumed to be parallel with
the x* axis and to have the initial orientation in the x'-x? plane given by the initial angle of inclination, ,,
or the unit normal vector »;. The initial porosity in the shear band is slightly higher, f; + Af, than the
porosity in the material outside the band, f;, hence, the value Af represents the material inhomogeneity.
The Cartesian coordinate system, x', is used as reference and the principal stress and strain directions
outside the shear band are assumed to remain fixed and parallel to these axes throughout the deformation
history. The stress states inside and outside the thin slice of material, respectively, are assumed to remain
uniform. This type of model has been used earlier by a number of authors (Rice, 1976; Yamamoto, 1978;
Tvergaard, 1981; Saje et al., 1982). An extension to also cover the post localization behaviour was used by
Tvergaard (1982b).

The tangential derivatives of the displacement increments, #;, over the band interface have to be con-
tinuous due to compatibility. Thus, the derivatives of the displacement components inside the band are
expressed by

W, =i, + em (15)
in which ()° and ()b denote quantities outside and inside the band, respectively, and ¢; are parameters to be
determined. When no material inhomogeneity is present inside the band, the parameters ¢; equal zero until
bifurcation occurs. In the present study, the slightly higher porosity in the band leads to a softer material
response inside the band than outside and hence the solution for ¢; is non-trivial from the beginning. The
onset of localization is then defined as the point where the material outside the band starts to unload.
Equilibrium is expressed by

(7)° = (') (16)
with the nominal tractions on the interface inside the band set equal to those outside the band. The nominal
tractions on a surface with reference normal »; are given by

T = (¥ + ‘f“u‘;k)nj (17)
Different degrees of stress triaxiality are studied by using

05 = Ko} (18)

where o; are the principal stresses and k = 0 corresponds to uniaxial plane strain compression or uniaxial
compression depending on the strain state

€ =ye (19)

X 1
Yy
Xl

Fig. 2. Shear band model.
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where ¢; are the principal logarithmic strains. Plane strain is obtained with y = 0 and axisymmetric con-
ditions outside the band with y = 1.
The current angle of inclination, ¥, can be obtained from

tany = exp(e] — €5) tany, (20)

at any stage of deformation.

4. Results

No shear band instabilities in compression occur in aggregates of powder with fully sticking inter-
particle contacts, n = 1, or for other models representing full cohesion (see Redanz and Tvergaard, 1999).
In contrast, stress states in compression leading to dilatation and thereby the possibility of shear band
instabilities can occur for materials exhibiting low inter-particle strength, i.e. low values of 5 (see Tvergaard
and Redanz, 2001). Hence, focus in the present work will be on rather high porosities, where the material
model, Eq. (5) and Fig. 1, exhibits little cohesive strength. Data of the material to be analysed are
oy/E =0.0033, v=0.3, and n = 10, and the parameters for the material model are set to 5, = 0.001,
n, = 0.1, f, =0.30, f, =0.05, f; =0.20 and f, = 0.01. The resulting array of yield surfaces is shown in
Fig. 1.

The imperfection sensitivity in a homogeneously strained solid is illustrated for different initial porosities
in Fig. 3, where the logarithmic strain outside the band at localization, —¢{, vs. the initial porosity im-
perfection, Af, is shown. Plane strain conditions, €} = 0, are assumed, and the initial band orientation is set
to i, = 55°. The ratio between transverse and axial stresses is kept fixed at k = 69 /0 = 0.10. It is seen, that
rather large porosity imperfections are necessary to trigger localization at lower initial porosities, f, i.e.
when the material is more dense and the cohesive strength is no longer small. In each case, the critical strain
is high at the lowest possible imperfection for localization to take place, but the critical strain is then re-
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Fig. 3. Localization strain vs. initial porosity imperfection for plane strain conditions, €} = 0, for different initial porosities with
k = 0.10, n = 10, and , = 55°.
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duced rapidly for increasing Af and all curves plateau at high imperfection amplitudes. At f; = 0.15, no
instability was found in the imperfection range studied due to the higher material cohesive strength.

Localization is found only when the material in the band undergoes dilatation, which corresponds to
stress states on the parts of the yield surfaces in Fig. 1, where the normal to the yield surface has a positive
component on the abscissa. In order to clarify this, the evolution of porosity inside and outside the band, f*
and f°, during compaction are shown in Figs. 4 and 5, respectively. The curves represent three different
initial porosities, f; = 0.15, 0.16 and 0.18, with different localization behaviour. The porosity amplitude is
Af = 0.02 and the stress ratio is k = ¢9/0¢ = 0.10, hence, the curves correspond to the far most right points
in the previous figure. No localization occurs for f; = f© = 0.15 as both f® and f° decrease with com-
paction. For the material with a slightly higher initial porosity, f; = 0.16, the porosity inside the band
increases slowly until the point of localization after which it increases rapidly. The stress ratio is kept fixed
also after the onset of localization, hence, unloading of the material outside the band results in a sign
change of the logarithmic strain rate. When the initial porosity is f; = 0.18, localization does not occur in
the usual sense, since plastic yielding never occurs outside the band, but the macroscopic material softening
starts soon after the onset of yielding inside the band.

The same plane strain case is considered in Fig. 6 but for different levels of transverse compression while
the initial porosity is kept fixed at f; = 0.25. Here, the curve for k = ¢9/0) = 0.10 is identical to that shown
for f; = 0.25 in Fig. 3. Shear bands are easily formed when the transverse stress is low, whereas rather high
imperfection amplitudes are needed to obtain instabilities at higher transverse stresses. The critical strain
increases with increased stress ratio. Higher values of x were tested, e.g. k = 0.25, but no localization was
found as no dilation takes place even at large imperfections. At imperfection amplitudes higher than ap-
proximately Af = 0.01 the strong dependence on the degree of transverse compression almost disappears
for the four curves shown.

In Fig. 7, the degree of transverse stress is studied in a material with lower initial porosity, f; = 0.18, but
otherwise identical to the material considered in Fig. 6. Curves of the localization strain, —e{, vs. the initial
porosity imperfection, Af, for the low porosity material are shown. The result of k = 0.10 was also seen in
Fig. 3. The initial cohesive strength at f; = 0.18 is n = 0.15, which is significantly higher than # ~ 0.02 at
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0.2 | i i

L 0.16
IRT R S 1
0.15
0.16 F ]
0 0.005 0.01 0.015 0.02

o
—€f

Fig. 4. Evolution of porosity in the band vs. logarithmic strain, —e{, for plane strain conditions, €} = 0, for different initial porosities
with k = 0.10, n = 10, and v, = 55°.
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Fig. 5. Evolution of porosity outside the band vs. logarithmic strain, —e{, for plane strain conditions, € = 0, for different initial
porosities with ¥ = 0.10, n = 10, and y, = 55°.
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Fig. 6. Localization strain vs. initial porosity imperfection for plane strain conditions, ¢ = 0, for different levels of transverse com-
pression with f; = 0.25, n = 10, and v, = 55°.

f1 =0.25 from the previous figure. The higher cohesive strength leads to later localization, and higher

porosity imperfections are necessary to form the shear bands.

Furthermore, the stress ratio

Kk = 69 /09 = 0.20 does not lead to formation of shear bands in compression for this lower porosity ma-
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Fig. 7. Localization strain vs. initial porosity imperfection for plane strain conditions, €} = 0, for different levels of transverse com-
pression with f; = 0.18, n = 10, and , = 55°.

terial, whereas instabilities are observed at the higher porosity for the same degree of transverse stress (see
Fig. 6).

The dependence on the initial angle of inclination, y,, is shown in Fig. 8 for a material with f; = 0.18 and
Af = 0.008 under plane strain conditions. Different levels of transverse compression are shown. As ex-
pected, there is a strong sensitivity to the initial band orientation, such that the lowest critical strain occurs
at a value around 53° for k = 0.10 and down to about 50° for lower values of transverse stresses. At
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Fig. 8. Localization strain vs. initial band orientation for plane strain conditions, €} = 0, for different levels of transverse compression
with f; = 0.18, Af = 0.008 and n = 10.
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uniaxial plane strain compression, k = 0, the critical strain values are almost constant in a wide range of v,
values. In fact, the strain values shown on the flat part of the curve, 47° < i, < 53°, are not localizations in
the usual sense, since the material outside the band never yields, and the strain shown is the maximum value
reached outside the band, which occurs slightly after the onset of yielding inside the band. A similar lo-
calization behaviour was shown in Figs. 4 and 5. A slight increase in the transverse stress, k = 0.05, results
in true localization strains in the whole range of inclination angles considered.

Fig. 9 illustrates the effect of stress triaxiality under axisymmetric conditions, € = €3, outside the band.
The set of material parameters considered are the same as in Fig. §, but with the porosity imperfection set
to a rather high value, Af = 0.03. Even at this high initial imperfection, the localization strains are quite
high compared to the plane strain results in Fig. 8§ showing plane strain conditions with a much smaller
porosity imperfection, Af = 0.008. That localization strains are significantly higher for axisymmetric
conditions has been shown earlier, e.g. for the Gurson model in tension (see Redanz and Tvergaard, 1999).
Again, there is no true localization at the flat parts of the curves, as no yielding outside the band takes
place. However, the critical strains pick up at , > 60° and increase significantly with increased inclination
angle even at uniaxial compression, k = 0. At x = 0.20, all points shown represent true localization,
whereas no shear bands are formed at the higher stress triaxiality, x = 0.25.

The dependence on the imperfection amplitude is shown for axisymmetric conditions at different levels
of stress triaxialities in Fig. 10. The inclination angle is i, = 65°, hence, the results for Af = 0.03 corres-
pond to the 65° data points shown in Fig. 9. In Fig. 10, the critical strain curves do not increase rapidly at
lower porosity imperfections, as in the plane strain case, instead the curves show a point of inflection as Af
decays.

We have no direct experimental comparison for shear band formation in metal powder compaction.
However, it is noted that in both plane strain and triaxial compression tests of e.g. dense sand and stiff merl
the localization strain varies from about —0.04 to —0.004 and even lower for loose sand (see e.g. Oda and
Kazama, 1998; Desrues and Chambon, 2002). These localization strains are of the same order of magnitude
as those found in the present analyses.
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Fig. 9. Localization strain vs. initial band orientation for axisymmetric conditions, € = €3, for different levels of transverse com-
pression with f; = 0.18, Af = 0.03 and » = 10.
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Fig. 10. Localization strain vs. initial porosity imperfection for axisymmetric conditions, €§ = €3, for different levels of transverse
compression with f; = 0.18, n = 10, and , = 65°.

5. Discussion

For the metal powder compaction process the material model proposed by Fleck et al. (1992) appears to
be very reasonable, using an interpolation between two micro-mechanically based models, the FKM model
appropriate for high porosity levels with particles connected by isolated necks, and the Gurson model
appropriate for much lower porosity levels, with the porosity present in the form of isolated voids. In this
case the interpolation with the Gurson model is necessary, since the FKM model is not applicable at low
porosities, i.e. f < 0.10. However, the fact that this model does not predict any localization of plastic flow
in shear bands under compressive loading (Redanz and Tvergaard, 1999) illustrates that something is
missing. When using the modified version of the FKM model proposed by Fleck (1995), which introduces a
cohesion factor to be able to represent a low level of inter-particle cohesion, it has been shown (Tvergaard
and Redanz, 2001) that shear localization under compressive loading is predicted in some cases.

Based on these results, a more realistic material model for metal powder compaction is proposed in the
present paper. This model is based on an interpolation between the low inter-particle cohesion model
proposed by Fleck (1995) and the Gurson model. The model also introduces a linear variation of the
cohesion factor with the porosity level. For high porosity levels this model predicts shear band instabilities,
as would be expected since the model is practically identical to that of Fleck (1995) in this range. The low
inter-particle cohesive strength in the highly porous material makes it possible to obtain stress states in
compression leading to dilatation and thereby possibly shear band instabilities. Also in an intermediate
range of porosities it has been shown here that shear localization can still occur, if the stress triaxiality is not
too large. However, for the parameter values chosen in the present analyses no localization is predicted
under compressive loading if the level of porosity is quite low.

It is noted that if the Gurson model is not involved at all in the material model proposed here, so that the
only dependence on the porosity f is that involved in the proposed linear dependence of the cohesion factor
on f, in addition to the dependence already included in the model proposed by Fleck (1995), the model
would not be realistic at small porosities. Even for a small value of the cohesion factor 5 the model would
allow for unrealistic yield stresses larger than that of the fully dense material if / < 0.10. Using the Gurson



1864 P. Redanz, V. Tvergaard | International Journal of Solids and Structures 40 (2003) 1853-1864

model in the range of small porosities is considered realistic for compressive stresses but for tensile stresses
the model will overestimate the strength of the green specimen.
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